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Abstract
We consider quantum walks on the cycle in the non-stationary case where the
‘coin’ operation is allowed to change at each time step. We characterize, in
algebraic terms, the set of possible state transfers and prove that, as opposed
to the stationary case, the associate probability distribution may converge to a
uniform distribution among the nodes of the associated graph.

PACS numbers: 03.65.−w, 03.67.−a

1. Non-stationary quantum walks on the cycle

Consider a non-oriented graph where all the N nodes have the same degree d and assume that, at
each time step, a walker makes a choice, out of a set of d elements, {1, . . . , d}, a (generalized)
coin, with probability p1, p2, . . . , pd , respectively. The walker starts from a given node of
the graph and moves in a direction determined by the choice in {1, . . . , d}. After time t, the
walker will have a probability P(j, t) of being found in the node j, j = 1, . . . , N . Such a
system is known as a random walk on a graph. A quantum walk is the quantum counterpart of
a random walk in that both the walker and the coin are seen as quantum systems of dimensions
N and d, respectively. At each step an operation C is performed on the coin system and then
an operation is performed on the walker system. The latter operation depends on the state of
the coin system.

Quantum walks have recently received large attention due to the fact that they can model
quantum algorithms and generate interesting quantum states. There are several review papers
on quantum walks, their use, dynamics, implementations and generalizations (see, e.g.,
[10, 11]). In most studies presented so far, the coin operation C is fixed and repeated at
each time step. We shall call this type of quantum walks stationary, while quantum walks
where the coin operation is allowed to change at each time step will be named non-stationary.
Studies exist on how the parameters of C affect the behavior of the quantum walk [19]. The
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non-stationary case has been considered in both numerical and analytic studies where the coin
operation is allowed to change at each step according to a prescribed sequence or it is random
[12, 13, 15, 17]. It is shown that, for certain walks, the presence of random noise in C at each
step, the so-called unitary noise, causes a behavior similar to the classical random walk. A
non-stationary setting can be considered also for other types of random walks such as classical
walks on groups (as for example the Heisenberg group) [7, 8, 14]. These systems are of
current interest as models of quantum dynamics. The role of the coin process is played by
a dynamical system which may be characterized by a time-varying transformation therefore
giving rise to a non-stationary random walk on a group. Similar questions to the ones treated
here, in particular concerning the set of achievable distributions, can be asked in that setting
as well.

In this paper, we approach the study of non-stationary quantums walk from the point of
view of design and control [5]. We consider the coin operation C as a control variable which
we can change at each step in order to obtain a desired behavior. The first questions that
arise in this setting are therefore about the type of behavior that can be obtained (in particular
the type of probability distributions) and whether there are significant differences with the
stationary case. This paper is a first study in this direction.

Current proposals for implementations of stationary quantum walks (see [10] and
references therein) may be modified in order to obtain a non-stationary walk. This is discussed
for example in [15] for a specific experimental proposal where a variable coin operation can
be obtained by varying the duration of a laser pulse.

The quantum walk on the cycle is the simplest finite-dimensional quantum walk. The
study of stationary quantum walks on the cycle was started in [1]. In this case, as a consequence
of the reversibility of the evolution, the probability distribution P(j, t) does not converge to
a constant value as t → ∞. This is in contrast with the classical random walk on the cycle
whose probability distribution converges to a uniform distribution independently of the initial
state. For this reason, a Cesaro type of alternative probability distribution is introduced which
is the average of P(j, t) over an interval of time [0, t). With this definition, a uniform limit
distribution is obtained for a number of positions N odd, which is independent of the initial
state as long as this one is localized in one given position. For N even, there is a much richer
behavior and different limit distributions are obtained for different initial states as discussed
in [3, 4]. From an experimental point of view having a uniform Cesaro-type limit probability
distribution means that there is equal probability of finding the walker in one of the positions
by measuring at a random time over a very large interval.

In dealing with non-stationary walks on the cycle, the first question concerns the type
of (non-Cesaro) probability distributions that can be obtained. This question is of interest in
the use of random walks for algorithmic purposes. In fact, there exist several computational
algorithms which are based on sampling from a given set of objects according to a prescribed
distribution [18]. These algorithms are referred to as randomized algorithms. If one uses
a quantum walk to implement one of these algorithms, one can obtain the desired sample
by measuring the position of the walker. One natural question concerns the set of possible
distributions available. We shall answer this question in Lie algebraic terms in this paper
for a non-stationary walk on the cycle and will show that it is possible that the probability
distribution converges to a uniform distribution. There are at least two reasons to consider
the uniform distribution with special attention. One is that it offers an example of a limit
distribution (in the non-Cesaro sense) which is not available in the stationary case. In fact,
we will show that it is possible to reach a separable state of the form |1〉 ⊗ |w〉, where |1〉
is a state of a two-dimensional coin and |w〉 is a state of the walker with all equiprobable
positions (cf formulas (17) and (18) below). Since the coin operation is arbitrary, we can
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set it equal to the identity in the following steps, and in the following evolution the walker
will just move from one position to the other in a cycle and the probability of each position
will be uniform. The probability distribution therefore reaches the uniform value and then
stays constant. This is an example of a behavior different from the stationary case. The
second reason to consider the uniform distribution in more detail is that this is the limit of the
corresponding classical random walk on the cycle. Therefore, if an algorithm uses this feature
of the classical counterpart, it can be implemented with the non-stationary quantum walk. For
example, a randomized algorithm which requires sampling from a uniform distribution can be
implemented by measuring the position of the walker at a large time. If we use the Cesaro
definition of probability distribution we could perform a measurement but will have to select
(again) a random time over a large interval.

A quantum walk on the cycle is a bipartite quantum system C ⊗ W , where the system C,
the coin, is a two-level system with orthonormal basis states |+1〉 and |−1〉. The system W ,
the walker, is an N-level system with orthonormal basis states |0〉, |1〉, . . . , |N − 1〉. At the tth
time step, one performs a coin operation of the form Ct ⊗ 1, where Ct is an arbitrary (special)
unitary operation on the two-dimensional Hilbert space associated to C, i.e., an element of
SU(2). This is followed by a conditional shift S on the Hilbert space associated with W
defined as

S|c〉 ⊗ |j 〉 = |c〉 ⊗ |(j + c) mod N〉.
By considering the standard basis |ej 〉, j = 1, . . . , 2N , defined by |ej 〉 := |1〉 ⊗ |j − 1〉 and
|ej+N 〉 := | − 1〉 ⊗ |j − 1〉, j = 1, . . . , N , the matrix representation of the operator Ct ⊗ 1 is
Ct ⊗ 1N×N , where 1N×N is the N ×N identity,4 ⊗ denotes the Kronecker product of matrices
and Ct ∈ SU(2). The matrix representation of the operator S is the block diagonal matrix
diag(F, F T ), where F is the basic circulant permutation matrix, that is,

S := diag(F, F T ), F :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 · · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The probability of finding the walker in the state |j − 1〉, j = 1, . . . , N , is the sum of the
probabilities of finding the state of the composite system C ⊗W in |1〉 ⊗ |j − 1〉 := |1, j − 1〉
and | − 1〉 ⊗ |j − 1〉 := | − 1, j − 1〉. That is, if |ψ〉 is the state of the composite system,

P(j − 1, t) = |〈ψ(t)|1, j − 1〉|2 + |〈ψ(t)| − 1, j − 1〉|2
= |〈ψ(t)|ej 〉|2 + |〈ψ(t)|ej+N 〉|2. (2)

By writing

|ψ〉 :=
2N∑
k=1

αk|ek〉,
2N∑
k=1

|αk|2 = 1, (3)

we have

P(j − 1, t) = |αj |2 + |αj+N |2, j = 1, . . . , N. (4)

In what follows we shall make the following standing assumption.

Assumption. N is an odd number.

4 We replace this notation by 1 when there is no ambiguity on the dimension.
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We use this technical assumption in several steps and in particular in theorem 1 to show
that the matrix S defined in (1) is in a certain Lie group (cf formula (11)). In the stationary
case, problems with the N even case arise from the degeneracy of eigenvalues in the basic
S(C ⊗ 1) operation. As we have mentioned, this leads to a very different and richer behavior
with respect the N odd case.

2. Characterization of the admissible evolutions

In this section, we characterize the set of unitary evolutions available for a non-stationary
quantum walk on the cycle, that is, the set of available state transfers. This is the set of finite
products of operators of the form S(C ⊗ 1N×N), where S is defined in (1) and C ∈ SU(2).
We denote such a set by G. The set G is a group. It is in fact a Lie group as is shown in
the following theorem. In order to state this theorem, we need to recall some properties of
circulant matrices [6] and define two Lie algebras.

Circulant N ×N matrices with complex entries form a vector space over the real numbers.
Each matrix is determined by the first row since all the other rows can be obtained by cyclic
permutation of the first one. Moreover, every complex circulant matrix R can be written as
linear combination with complex coefficients of the basic permutation matrix F defined in (1)
and its powers from 0 to N − 1, i.e.,

R :=
N−1∑
l=0

alF
l, (5)

with N complex coefficients a0, . . . , aN−1. All the circulant matrices commute. If we require
that R is not only circulant but also skew-Hermitian then we must have

R† = a∗
0 1 +

N−1∑
l=1

a∗
l F

lT = −R = −a01 −
N−1∑
l=1

alF
l, (6)

and with a change of index l → N − l and using FN−lT = F l , we have

R† = a∗
0 1 +

N−1∑
l=1

a∗
N−lF

l = −a01 −
N−1∑
l=1

alF
l. (7)

This gives the relations

a∗
0 = −a0, a∗

N−l = −al, l = 1, . . . ,
N − 1

2
. (8)

Equations (7) constitute N-independent relations on the 2N real parameters of R and show
that the space of skew-Hermitian circulant matrices is a real vector space of dimension N.

Denote by L the Lie algebra spanned by the 2N × 2N skew-Hermitian matrices of the
form

L1 :=
(

R 0
0 −R

)
and L2 :=

(
0 Q

−Q† 0

)
, (9)

with R being a skew-Hermitian circulant N × N matrix and Q a general circulant matrix. It
is easily seen that this is in fact a Lie algebra of (real) dimension 3N ; the fact that it is closed
under the Lie bracket being a consequence of the fact that the product of two circulant matrices
is another circulant matrix. Note, in particular, that matrices of the type L1 form an Abelian
subalgebra of dimension N. We denote by eL the connected Lie group associated with L.
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Theorem 1. The set G of possible evolutions of a non-stationary quantum walk is the Lie
group eL.

Proof. We define an auxiliary Lie algebra L′, prove that G = eL
′
and then prove that L = L′.

The claim then follows from the correspondence between Lie groups and Lie algebras. We
denote by L′ the Lie algebra generated by the set

F := {su(2) ⊗ 1, S(su(2) ⊗ 1)ST , . . . , SN−1(su(2) ⊗ 1)S(N−1)T }, (10)

where S is defined in (1) and T denotes the transposition.
To show that G ⊆ eL

′
, it is enough to show that both C ⊗ 1, C ∈ SU(2) and S are in eL

′
.

This fact is obvious for C ⊗ 1, since this is the exponential of an element in su(2) ⊗ 1. For S,
we consider the elements

(
0 −1
1 0

) ⊗ 1 and S
N−1

2
((

0 1
−1 0

) ⊗ 1
)
S( N−1

2 )T , both in eL
′
, and calculate

with (1)[(
0 −1
1 0

)
⊗ 1

] [
S

N−1
2

((
0 1

−1 0

)
⊗ 1

)
S(N−1

2 )T
]

=
(

F (N−1)T 0
0 FN−1

)
=

(
F 0
0 FT

)
:= S. (11)

We have used F (N−1)T = F .
To show that eL

′ ⊆ G it is enough to show that every element of the type Sj (X ⊗ 1)SjT ,
with X ∈ SU(2), j = 0, . . . , N − 1, can be written as the finite product of elements of the
form S(C ⊗ 1) with C ∈ SU(2).5 This is readily seen because, with X ∈ SU(2), for every j ,

Sj (X ⊗ 1N×N)SjT = (Sj (X ⊗ 1N×N))(SN−j (12×2 ⊗ 1N×N)). (12)

To conclude the proof, we show that L = L′ showing that F ⊆ L and a basis of L can be
obtained as (repeated) Lie brackets and/or linear combinations of elements of F in (10). A
general matrix in F has the form, with A ∈ su(2),

Sj (A ⊗ 1N×N)SjT =
(

F j 0
0 F jT

) (
ib1N×N α1N×N

−α∗1N×N −ib1N×N

) (
F jT 0

0 F j

)

=
(

ib1N×N αF 2j

−α∗(F 2jT ) −ib1N×N

)
, (13)

with general b real and α complex, j = 0, . . . , N − 1. This is clearly in L. Elements of the

form L2 in (9) are real linear combinations of elements of the form
(

0 γF k

−γ ∗FkT 0

)
which are of

the form in (13) with b = 0, γ = α and j = k
2 for k even and j = N+k

2 for k odd. A basis for
the real elements of the type L1 is given by the N−1

2 linearly independent elements(
F j − F jT 0

0 −(F j − F jT )

)
, j = 1, . . . ,

N − 1

2
. (14)

These are obtained as Lie brackets of
(

0 1N×N

−1N×N 0

)
and

(
0 Fj

−FjT 0

)
which are both of type L2.

A basis for the purely imaginary elements of type L1 is given by the N+1
2 linearly independent

elements of the type(
i(F j + F jT ) 0

0 −i(F j + F jT )

)
, j = 0, . . . ,

N − 1

2
, (15)

which are obtained as Lie brackets of
(

0 Fj

−FjT 0

)
and

(
0 i1N×N

i1N×N 0

)
. This completes the proof

of the theorem. �
5 Recall that every element of a connected Lie group can be obtained as the finite product of exponentials of a set of
generators of the corresponding Lie algebra (see, e.g., [9]) and the exponential map is surjective on SU(2) (see, e.g.,
[16]).
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3. Obtaining the uniform distribution

The Lie group G = eL, having dimension 3N , is not isomorphic, for N � 3, to SU(2N)

(which has dimension 4N2 − 1) nor to Sp(N) (which has dimension N(2N + 1)). Therefore,
G = eL is not transitive on the complex sphere of dimension 2N which means that there
are state transfers for the quantum system of coin and walker which are not induced by any
transformation in G [2]. Some state transfers are of special interest. In particular, we are
interested in whether a state of the form

|ψin〉 := |ψcoin〉 ⊗ |0〉, (16)

that is, a state corresponding to the walker with certainty in position |0〉, can be transferred
to a state corresponding to the uniform distribution. This is a state where the probability
P(j − 1, t) in (2) is equal to 1

N
, for every j = 1, . . . , N , at some t, that is, the walker is

found in any position with the same probability. Since, ∀C ∈ SU(2), C ⊗ 1N×N ∈ eL, we can
assume, without loss of generality, that |ψcoin〉 in (16) is |1〉 so that the problem is to transfer
the state |e1〉 := [1, 0, . . . , 0]T to a state with the desired property. We shall show in the
following that such a state transfer is possible.

Theorem 2. There exists a matrix L in L such that

eL|e1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2

...

rN

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

where

|r1|2 = |r2|2 = · · · = |rN |2 = 1

N
. (18)

In order to prove this theorem we first prove a lemma. Recall the definition of the Fourier
matrix � of order N (see, e.g., [6]). This is defined so that its conjugate transposed is

�† := 1√
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωN−1

1 ω2 ω4 ω6 . . . ω2(N−1)

1 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
...

...

1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where ω is the Nth root of the unity, that is ω := ei 2π
N . The Fourier matrix � is unitary.

Lemma 3.1. Define

xl := l(l − 1)π

N
, l = 0, 1, . . . , N − 1. (20)
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Then ⎛
⎜⎜⎜⎜⎜⎝

r1

r2

r3

...

rN

⎞
⎟⎟⎟⎟⎟⎠ := 1√

N
�†

⎛
⎜⎜⎜⎜⎜⎝

eix0

eix1

eix2

...

eixN−1

⎞
⎟⎟⎟⎟⎟⎠ (21)

has the property (18).

Proof. From (19) and (21), we obtain

rh = 1

N

(
1 +

N−1∑
l=1

ω(h−1)l eixl

)
, h = 1, . . . , N. (22)

This, using the definition of ω, gives

rh = 1

N

(
1 +

N−1∑
l=1

e
i2π(h−1)l

N eixl

)
. (23)

We calculate |rh|2, h = 1, . . . , N , as

|rh|2 = r∗
hrh = 1

N2

N−1∑
l1,l2=0

ei 2π
N

(l2−l1)(h−1) ei(xl2 −xl1 )

= 1

N
+

2

N2

N−1∑
{l1,l2}=0

Re
(
ei 2π

N
(l2−l1)(h−1) ei(xl2 −xl1 )

)
. (24)

The sum in the last term is intended over all the pairs of indices {l1, l2}, with l1 �= l2, where
only one is chosen between {l1, l2} and {l2, l1}. Because of the presence of the real part ‘Re’ it
is not important which pair is chosen. We now show that, with the choice (20), the last term
of this expression is zero for every h, which will prove the claim that |rh|2 = 1

N
.

It is convenient to re-write the sum by regrouping elements corresponding to l2 − l1 =
p mod N , for p = 1, . . . , N − 1. This means l2 − l1 = p or l1 − l2 = N − p. We have

N−1∑
{l1,l2}=0

Re
(
ei 2π

N
(l2−l1)(h−1) ei(xl2 −xl1 )

)

=
N−1∑
p=1

Re

⎛
⎝ ∑

l2−l1=p

ei(l2−l1)(h−1) 2π
N ei(xl2 −xl1 ) +

∑
l1−l2=N−p

ei(l2−l1)(h−1) 2π
N ei(xl2 −xl1 )

⎞
⎠ .

(25)

Doing the substitution l1 = l and l2 = l + p in the first term of the sum and the substitution
l1 = l and l2 = l − (N − p) in the second term, this sum becomes

N−1∑
p=1

Re

⎛
⎝eip(h−1) 2π

N

⎛
⎝N−1−p∑

l=0

ei(xl+p−xl ) +
N−1∑

l=N−p

ei(xl−(N−p)−xl )

⎞
⎠

⎞
⎠ . (26)

We now show that, with the choice (20), the content of the innermost parenthesis in the above
expression, i.e.,

M := M(p) :=
N−1−p∑

l=0

ei(xl+p−xl) +
N−1∑

l=N−p

ei(xl−(N−p)−xl), (27)
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is zero for each p which will conclude the proof of the lemma. Replacing (20) in (27) and
after some algebraic manipulations, we obtain

M(p) =
N−1−p∑

l=0

ei 2π
N

(
p(p−1)

2 +pl) +
N−1∑

l=N−p

ei 2π
N

(
(N−p)(N−p+1)

2 −(N−p)l) =
N−1∑
l=0

ei 2π
N

(
p(p−1)

2 +pl). (28)

Thus, we have

M(p) = ei 2π
N

p(p−1)

2

N−1∑
l=0

ei 2πpl

N = ei 2π
N

p(p−1)

2
1 − ei2πp

1 − ei 2πp

N

= 0 ∀ p �= 0 mod N. (29)

This concludes the proof of the lemma. �

We are now ready to prove theorem 2

Proof of theorem 2. We choose L as a matrix of the form L1 in (9) so that eL has the form

eL =
(

eR 0
0 e−R

)
, (30)

with R being a general skew-Hermitian N × N circulant matrix. The problem is therefore to
find a circulant matrix R so that

eR

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r1

r2

...

rN

⎞
⎟⎟⎟⎠ , (31)

with r1, . . . , rN satisfying (18). Any circulant matrix R is diagonalized by the Fourier
matrix (19) of the corresponding dimension, that is,

R = �†��, (32)

with � being diagonal. Conversely, every matrix of the form on the right-hand side is circulant
[6]. Moreover, if � = diag(iλ0, iλ1, . . . , iλN−1), with λl, l = 0, . . . , N − 1 real numbers, R
is skew-Hermitian. In this case, we have

eR

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ = �†e��

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ = �†e� 1√

N

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ = �† 1√

N

⎛
⎜⎜⎜⎝

eiλ0

eiλ1

...

eiλN−1

⎞
⎟⎟⎟⎠ . (33)

Choosing λl = xl, l = 0, . . . , N − 1 with definition (20), the theorem follows from
lemma 3.1. �

Other states with the same property can be obtained by applying a transformation
U ⊗ 1, U ∈ SU(2), which is in G. In particular, note that the state (17) is a separable
state.

4. Conclusion

Non-stationary quantum walks have properties which distinguish them from stationary ones.
Moreover, they are amenable of study with the methods of quantum control. In fact, several
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problems, such as obtaining a given evolution, can be seen as control problems where the
evolution of the coin plays the role of the control. In this paper we have shown that, opposite
to the stationary case, a non-stationary quantum walk on the cycle may converge to a constant
distribution and in particular to a uniform distribution as for classical random walks. A
constructive approach to achieve this and other evolutions of interest for general quantum
walks will be the subject of future research.
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